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Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with marked phenotypic differences observed 
among its major histological subtypes, adenocarcinoma (ADC), squamous cell carcinoma (SCC), and small cell lung cancer 
(SCLC), in both clinical presentation and therapeutic response. In recent years, metabolomics has emerged as a powerful tool 
for studying cancer metabolic reprogramming, providing new insights into the metabolic distinctions among lung cancer sub-
types. This review summarizes recent research advances in the metabolomics of ADC, SCC, and SCLC. Studies have revealed 
that ADC and SCC display distinct metabolic profiles in lipid metabolism, amino acid metabolism, and cell membrane synthe-
sis, while SCLC demonstrates a unique metabolic pattern. Through metabolomic technologies, particularly mass spectrometry 
and liquid chromatography, it is possible to effectively differentiate lung cancer subtypes and identify potential biomarkers 
for early diagnosis and personalized treatment. This review also explores the clinical potential of metabolomics in lung cancer, 
emphasizing its critical role in early diagnosis and subtype stratification. These methodological advances establish a robust 
foundation for precision oncology paradigms in thoracic malignancies.

Keywords: Metabolomics; Adenocarcinoma; ADC; Squamous cell carcinoma; SCC; 
Non-small cell lung cancer; NSCLC; Small cell lung cancer; SCLC.
*Correspondence to: Hongsheng Liu, Department of Thoracic Surgery, Peking Un-
ion Medical College Hospital, Chinese Academy of Medical Science & Peking Union 
Medical College, Beijing 100010, China. ORCID: https://orcid.org/0000-0003-4188-
9638. Tel: +86-13962933912, E-mail: hongshengliu16@163.com
#These authors contributed equally to this work.
How to cite this article: Chen W, Xu Y, Liu H. Metabolomic Characteristics and 
Clinical Implications in Pathological Subtypes of Lung Cancer. Cancer Screen Prev 
2025;000(000):000–000. doi: 10.14218/CSP.2025.00005.

Introduction
Lung cancer remains the leading cause of cancer-related mortality 
worldwide, with its high mortality rate closely linked to delayed 
diagnosis.1 The association between late-stage diagnosis and poor 
prognosis has been well documented in epidemiological studies. 
Analysis of data from the National Cancer Institute’s Surveillance, 
Epidemiology, and End Results program (2010–2019 cohort) re-
veals significant gender disparities in diagnostic staging: 24.9% 
of female patients presented with localized disease at diagnosis 
compared to 20.1% of males. Conversely, distant metastases were 
observed in 46.5% of female cases versus 50.9% of male cases.2 
Lung cancer is significantly heterogeneous and is primarily classi-
fied into non-small cell lung cancer (NSCLC) and small cell lung 
cancer (SCLC), with NSCLC constituting approximately 85% of 
pulmonary malignancies.2 These subtypes exhibit considerable 

heterogeneity in histological features, clinical manifestations, and 
therapeutic responsiveness, necessitating precise differentiation 
for optimal diagnostic accuracy, prognostic evaluation, and treat-
ment stratification. Tumor subtypes are typically assessed morpho-
logically using optical microscopy. EGFR mutations are common 
in adenocarcinoma (ADC), while TP53 mutations frequently occur 
in squamous cell carcinoma (SCC). Traditional diagnosis relies on 
imaging techniques such as computed tomography (CT), X-ray, 
and positron emission tomography (PET)/CT, alongside histo-
pathological evaluation. However, the high false-positive rate of 
low-dose CT screening, ranging from 7.9% to 49.3%, highlights 
the need for more precise auxiliary diagnostic tools.3 Moreover, 
conventional histopathological evaluation may not consistently 
achieve diagnostic precision, with interobserver concordance rates 
for NSCLC subtyping reported between 67.1% and 89.6%.4 Al-
though immunohistochemical markers demonstrate good perfor-
mance, the lengthy testing duration and high tissue consumption 
required for individual marker testing are significant drawbacks. 
In clinical practice, especially for small nodules obtained via fine-
needle aspiration, the sample size is often limited.

Metabolomics, a core discipline within systems biology, is 
emerging as a critical methodology for elucidating tumor hetero-
geneity through systematic analysis of small-molecule metabolite 
flux. It offers advantages such as high sensitivity, non-invasive 
sample acquisition (e.g., blood, saliva), and diverse technological 
platforms including mass spectrometry and nuclear magnetic reso-
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nance. Recent studies have revealed significant metabolic differ-
ences among lung cancer subtypes,5 which not only facilitate sub-
type differentiation but also enable the construction of diagnostic 
models based on metabolic markers, providing new directions for 
early screening and personalized treatment.

Therefore, this paper systematically reviews recent progress 
in metabolomics, focusing on the metabolic characteristics of 
NSCLC and SCLC and the development and application of me-
tabolomics in lung cancer. First, the development and application 
of metabolomics in lung cancer are summarized. Next, we analyze 
the metabolic differences among various lung cancer types. Final-
ly, we evaluate the translational potential and clinical implications 
of metabolomics in three clinical domains: early detection, molec-
ular subtyping frameworks, and personalized treatment strategies, 
through a critical analysis of contemporary studies.

The development of metabolomics in lung cancer
Metabolomics has evolved into a pivotal research tool for study-
ing tumor metabolic reprogramming, with potential applications in 
early diagnosis, prognosis prediction, and personalized treatment 

of lung cancer. Metabolomic analyses can be performed using 
biological samples, such as blood, urine, and biopsy tissues, ob-
tained through non-invasive or minimally invasive methods (Fig. 
1).6 The systematic characterization of biofluid metabolomes (e.g., 
saliva, plasma, and urine) facilitates the identification of metabolic 
signatures correlated with dietary exposures, microbiome dynam-
ics, and environmental carcinogens, thereby elucidating multifac-
torial mechanisms of oncogenesis. Compared to tissue samples, 
biofluids can be collected non-invasively or with minimal inva-
siveness, making them suitable for monitoring treatment response 
and cancer progression. Metabolic reprogramming is a hallmark of 
cancer cells, as tumor cells alter their metabolic pathways to meet 
the demands of rapid proliferation. By systematically interrogating 
intra- and extracellular metabolite fluxes, metabolomics platforms 
enable the discovery of novel oncobiomarkers with clinical util-
ity in diagnostic and therapeutic decision-making. Low-dose CT is 
widely used for early lung cancer screening, but its high false-pos-
itive rate leads to unnecessary medical resource consumption and 
patient anxiety. Thus, identifying sensitive and specific biomarkers 
is essential to complement imaging techniques.7 Several studies 
have demonstrated the promising potential of metabolomics in this 

Fig. 1. The anatomical origins and collection sites of the biological samples in this study, such as saliva, blood, exhaled breath condensate, and tissue 
samples. 

https://doi.org/10.14218/CSP.2025.00005


DOI: 10.14218/CSP.2025.00005  |  Volume 00 Issue 00, Month Year 3

Chen W.X. et al: Metabolomics in lung cancer subtype and clinical implications Cancer Screen Prev

context.8,9 Schult et al.8 collected serum samples from 79 NSCLC 
patients and 79 healthy controls, using high-resolution magic an-
gle spinning magnetic resonance spectroscopy to measure me-
tabolite differences between the groups. The results showed that 
changes in organic acids, amino acids, carnitines, phosphosugars, 
vitamins, coenzymes, nucleosides, nucleobases, and their deriva-
tives could establish an early diagnostic model for lung cancer. 
Additionally, this model could predict the 5-year survival rate of 
lung cancer patients. Zheng et al.9 employed gas chromatography-
mass spectrometry (GC-MS) to analyze plasma samples from lung 
cancer patients and healthy individuals. Their study revealed the 
diagnostic value of several differential metabolites, such as oleic 
acid, 2-hydroxybutyrate, cholesterol, and inositol, in accurately di-
agnosing lung cancer. Other studies have utilized saliva and bron-
choalveolar lavage fluid for metabolomic analysis. In a 2022 study, 
Takamori et al.10 collected saliva samples from 41 lung cancer pa-
tients and 21 patients with benign lung lesions. Using capillary 
electrophoresis-mass spectrometry, they detected and analyzed 
salivary metabolites, identifying 10 significantly different metabo-
lites between the two groups. The concentration of tryptophan in 
saliva from the lung cancer group was significantly lower than that 
in the benign lesion group. Concentrations of choline, thymine, 
cytosine, phenylalanine, leucine, isoleucine, lysine, and tyrosine 
were higher in the lung cancer group, although these differences 
were not statistically significant. A diagnostic model combining 
diethanolamine, cytosine, lysine, and tyrosine showed good dis-
criminatory ability in differentiating benign lung lesions from lung 
cancer. Callejón-Leblic et al.11 collected bronchoalveolar lavage 
fluid from lung cancer patients and analyzed the samples using 

GC-MS to identify differential metabolites. Their results indicated 
that glycerol and phosphate could be used not only for lung cancer 
diagnosis but also for prognosis. In recent years, researchers have 
explored exhaled breath condensate (EBC), a biological fluid ob-
tained non-invasively by collecting and cooling exhaled air.12 Typ-
ically, EBC is collected using a device equipped with a condenser 
and saliva collector, capturing both volatile and non-volatile me-
tabolites. Its composition is believed to reflect that of the airway 
lining fluid.13 In a 2025 study, Wang et al.12 used a non-targeted 
metabolomics approach based on ultra-performance liquid chro-
matography–high-resolution mass spectrometry to identify differ-
ential metabolites in EBC between NSCLC patients and controls. 
Upregulated metabolites in NSCLC EBC included amino acids 
and their derivatives, dipeptides, and fatty acids. Downregulated 
metabolites included 3,4-methylenesebacic acid, 2-isopropylmal-
ic acid / 3-isopropylmalic acid / 2,3-dimethyl-3-hydroxyglutaric 
acid, and trimethylamine-N-oxide.

Technical methods in metabolomics
Metabolomics employs advanced analytical techniques to identify 
and quantify small molecules (metabolites) in biological samples, 
providing a snapshot of metabolic activity under physiological and 
pathological conditions (Table 1).13–20 The two most commonly 
used platforms in metabolomics are nuclear magnetic resonance 
(NMR) and mass spectrometry (MS), each with unique advantages 
for lung cancer research. NMR is a crucial technique in metabo-
lomics, offering advantages such as non-destructive detection, 
simple sample preparation, and the ability to detect metabolites in 

Table 1.  Metabolomics techniques and their advantages and disadvantages

Technique Advantages Limitations Reference

Nuclear magnetic 
resonance (NMR)

1. Non-destructive analysis, allowing sample 
reuse; 2. Minimal sample preparation; 
3. Supports in vivo detection

1. Lower sensitivity and limited dynamic 
range compared to MS; 2. Poor resolution 
for low-abundance metabolites

13

Gas chromatography-
MS (GC-MS)

1. High sensitivity, resolution, and reproducibility; 
2. Mature technology with comprehensive 
databases; 3. Ideal for volatile compounds

1. Requires derivatization for non-
volatile/thermally unstable compounds; 
2. Complex sample pretreatment

14

Liquid 
chromatography-
MS (LC-MS)

1. Suitable for non-volatile and polar compounds; 
2. Strong separation capability for complex 
mixtures; 3. Flexible chromatographic conditions

1. Limited database compatibility; 
2. Complex data interpretation

14

Capillary 
electrophoresis-
MS (CE-MS)

1. Excellent for polar/charged compounds; 
2. Minimal pretreatment and low solvent 
consumption; 3. Rapid separation

1. Lower stability and sensitivity; 
2. Restricted applicability

15

Imaging mass 
spectrometry (IMS)

Providing spatial metabolite distribution 
in tissues (spatial metabolomics)

Relatively new technology, 
and the standardization and 
popularity to be improved

16

Single-cell 
metabolomics

Enabling high-resolution analysis of metabolites 
at the single-cell level by microfluidics

Technically challenging with high 
instrumentation/operational costs

17

Metabolic flux 
analysis (Fluxomics)

Dynamic tracking of metabolic pathway 
changes by isotopic labeling

Requiring complex experimental 
design and multi-omics integration

18

Ultra-high 
performance LC-
MS (UHPLC-MS)

1. Enhanced separation efficiency and speed; 
2. Ideal for high-throughput studies

Demanding high-pressure-resistant 
columns and instruments

19

Ion mobility 
spectrometry-
MS (IMS-MS)

1. Additional separation dimension for 
improved identification; 2. Suitable 
for complex biological samples

High cost and need for advanced 
data analysis algorithms

20
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vivo. However, NMR has limitations, including lower sensitivity 
compared to MS, a limited dynamic range, and reduced efficiency 
in detecting low-abundance metabolites. Despite these drawbacks, 
NMR remains irreplaceable in metabolite structure identification 
and quantitative analysis, especially in scenarios requiring non-
destructive detection and in vivo analysis.14 MS is one of the most 
widely used techniques in metabolomics research and is often com-
bined with separation methods to enhance analytical capabilities. 
Common combinations include GC-MS, liquid chromatography-
mass spectrometry (LC-MS), and capillary electrophoresis-mass 
spectrometry. GC-MS offers several advantages15: it is suitable 
for stable and easily vaporized samples, such as the separation of 
homologs and isomers; it has high sensitivity, efficient separation, 
high resolution, and good reproducibility; and the technology is 
mature, with relatively comprehensive public databases. How-
ever, its limitations include the need for derivatization to analyze 
non-volatile and thermally unstable compounds, which increases 
experimental complexity. LC-MS is suitable for non-volatile and 
polar compounds,15 with a broad detection range. The preceding 
liquid chromatography effectively separates complex mixtures, 
making LC-MS ideal for detecting potential biomarkers in biologi-
cal samples. It also allows flexible selection of chromatographic 
columns and separation conditions based on experimental needs. 
However, its limitations include weaker compatibility with public 
databases and more complex data interpretation. Capillary elec-
trophoresis-mass spectrometry is well suited for separating polar 
and charged compounds.15 It requires minimal sample pretreat-
ment, consumes little organic solvent, and is cost-effective, with 
fast separation enabled by fused silica capillaries. However, its 
limitations include lower stability and sensitivity, which restrict its 
application in certain studies. New Technologies: 1. Imaging Mass 
Spectrometry16: Used for spatial metabolomics research, provid-
ing information on the distribution of metabolites within tissues. 
2. Single-Cell Metabolomics17: Combines microfluidic technol-
ogy and mass spectrometry to achieve high-precision analysis of 
metabolites in individual cells. 3. Metabolic Flux Analysis (Flux-
omics)18: Studies dynamic changes in metabolic pathways using 
isotope labeling and mass spectrometry. 4. Ultra-high-performance 
liquid chromatography-mass spectrometry19: Builds on LC-MS by 
using ultra-high-performance liquid chromatography to improve 
separation efficiency. It offers higher separation efficiency, faster 
analysis speed, and is suitable for high-throughput metabolomics 
research. 5. Ion Mobility Mass Spectrometry20: Introduces ion 
mobility separation into mass spectrometry, adding an additional 
dimension of separation. It enhances separation capability and me-
tabolite identification accuracy for complex samples and is used 
for high-precision analysis of metabolites in complex biological 
samples. By integrating these technologies, metabolomics has re-
vealed critical metabolic alterations across lung cancer subtypes, 
such as increased glycolysis and disrupted lipid metabolism. These 
findings provide a deeper understanding of the biological mecha-
nisms underlying lung cancer.

Metabolomic characteristics of NSCLC and SCLC

Metabolomic differences between subtypes of NSCLC and 
SCLC
SCLC accounts for approximately 15% of all lung cancers and is 
characterized by rapid growth, early distant metastasis, and fre-
quent high resistance to treatment.21 Although research on meta-
bolic reprogramming in SCLC remains limited, recent studies 

have uncovered unique metabolic features with crucial implica-
tions for early diagnosis and personalized treatment. In a 2024 
multicenter study, Shang et al.21 conducted metabolomic and lipi-
domic analyses on serum samples from 461 subjects using liquid 
chromatography-tandem mass spectrometry. They identified a bio-
marker panel consisting of eight metabolites that effectively distin-
guished SCLC patients from NSCLC patients and healthy controls. 
The panel included 1-myristoyl-sn-glycero-3-phosphocholine, 
16β-hydroxyestradiol, 3-phosphoserine, DL-lactate, cholesterol 
sulfate, D-lysine, dioctyl phthalate, and Leu-Phe. The significantly 
elevated levels of these metabolites suggest substantial differences 
in lipid metabolism, amino acid metabolism, and other pathways 
between SCLC, NSCLC, and healthy individuals. Notably, these 
metabolic changes demonstrated subtype-specific stability, con-
firming unique metabolic reprogramming patterns in SCLC.

The emerging understanding of SCLC metabolic reprogram-
ming provides novel therapeutic targets to address clinical chal-
lenges such as aggressive invasion and rapid chemoresistance. Fu-
ture research should focus on integrating multi-omics approaches 
(combining metabolomics with epigenomic profiling and tumor 
microenvironment analysis), potentially shifting SCLC treatment 
from conventional chemotherapy to molecular subtype-guided 
precision therapies. Concurrently, developing metabolic signature-
based early detection systems and dynamic treatment response 
predictors could substantially improve clinical outcomes for this 
highly malignant disease.

Metabolomic characteristics of NSCLC
Current diagnostic methodologies for lung cancer primarily utilize 
two specimen types: histopathological specimens and peripheral 
blood plasma, the latter of which can more accurately reflect the 
metabolomic characteristics of cancer cells. Pioneering work by 
Rocha et al.22 employed tissue samples from 56 primary lung can-
cer patients, 19 ADC, 19 SCC, and 18 cases of rare histological 
variants, and analyzed them using NMR spectroscopy. The study 
revealed that phospholipid-related metabolites (phosphatidylcho-
line (PC), glycerophosphocholine, and polyethylene) showed sig-
nificant correlations in ADC compared to SCC (|r| > 0.7, P < 0.004, 
Bonferroni correction), while SCC exhibited stronger correlations 
with lactate, glucose, glutamate, alanine, glutathione, and creatine. 
Changes in glucose and lactate levels were more pronounced in 
SCC tumors, showing a negative correlation, whereas these cor-
relations were attenuated in ADC. Enhanced fluorodeoxyglucose 
avidity on PET imaging and significant glucose transporter 1 over-
expression characterized SCC specimens, supporting high glyco-
lytic rates. Regarding amino acid metabolism, glutamate and ala-
nine were significantly increased and positively correlated in SCC 
tumors. Creatine levels were elevated in both tumor types but more 
so in SCC than in ADC (126.4% vs. 28.2%, respectively). Spa-
tial metabolomic profiling through matrix-assisted laser desorp-
tion/ionization-mass spectrometry imaging of 35 NSCLC tissue 
samples, reflecting clinical prevalence (69% ADC vs. 31% SCC), 
found taurine abundant in adenocarcinoma tumor regions, while 
glutamine was more abundant in SCC.23 Taurine, a sulfur-con-
taining amino acid, may be related to cell membrane stability and 
antioxidant responses, while glutamine is closely associated with 
amino acid metabolism in cancer cells. In 2022, Zang et al.24 used 
ultra-high-performance liquid chromatography-high-resolution 
mass spectrometry to analyze 227 tissue samples from 79 NSCLC 
patients, confirming metabolomic differences between ADC and 
SCC. Valine, sphingosine, glutamate γ-methyl ester, and lysophos-
phatidylcholine (16:0) were characteristic of ADC, while SCC 
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was characterized by valine, sphingosine, lysophosphatidylcholine 
(18:1), and leucine derivatives. These distinct metabolic signatures 
enable histopathological discrimination between adenocarcinoma 
and SCC. Complementing tissue analysis, peripheral blood plasma 
has emerged as a viable biological matrix for lung cancer metabo-
lomics research. Several recent studies have explored metabolic 
differences between ADC and SCC through plasma metabolite 
analysis. In 2021, Cao et al.25 used LC-ESI-QTrap-MS/MS to ana-
lyze 128 plasma samples from NSCLC patients and established a 
logistic regression model integrating four differential metabolites. 
This model successfully distinguished ADC from SCC, with a sen-
sitivity of 92.0% and specificity of 92.9%, indicating the high po-
tential of plasma metabolites in identifying lung cancer subtypes. 
Also in 2021, Kowalczyk et al.26 conducted a study involving 99 
NSCLC tissue samples and plasma samples from 72 NSCLC and 
20 chronic obstructive pulmonary disease patients, analyzed using 
LC-MS. In early-stage SCC vs. ADC tissue comparisons, crea-
tine, creatinine, xanthine, and dihydrothymine were upregulated 
in SCC, while fatty acids, carnitine, glycerophospholipids, lyso-
glycerophospholipids, amines, amino acids, and amides were up-
regulated in ADC. Plasma analysis from NSCLC patients revealed 
that only two metabolites (PC 15:0/22:6 and 18:1/22:6) showed 
significant differences between early-stage SCC and ADC. In late-

stage plasma samples, metabolites distinguishing NSCLC sub-
types were primarily fatty acids, carnitine, and fatty acid amides. 
In 2024, Michal and Joanna’s team analyzed 101 plasma samples 
from NSCLC patients (41 ADC and 60 SCC) using LC-MS.4 They 
observed elevated levels of lysophosphatidic acids (LPAs) in SCC 
patients and oxidized phosphatidylcholines (oxPCs) in ADC sub-
jects. oxPCs act as ligands for vascular endothelial growth factor 
(VEGF) receptors, promoting tumor angiogenesis via strong mi-
togenic effects on vascular endothelial cells. VEGF receptors are 
known molecular targets for NSCLC treatment. Furthermore, hy-
poxia upregulates VEGF-A protein levels in lung cancer cell lines, 
and VEGF-A correlates significantly with tumor size, lymph node 
metastasis, and poorer overall survival in ADC patients.27 LPAs 
are derived from lysophosphatidylcholine through the action of 
extracellular autotaxin (ATX), which is present in body fluids such 
as plasma and malignant effusions. To date, seven LPA receptors 
have been identified. LPAs activate cell proliferation, differentia-
tion, and migration, playing important roles in wound healing. El-
evated ATX expression leads to increased LPA levels, which are 
associated with tumor severity. The ATX-LPA axis contributes to 
inflammation and lung cancer progression by increasing pro-in-
flammatory cytokines.28 Therefore, LPAs and oxPCs serve as po-
tential diagnostic biomarkers for ADC and SCC (Table 2).4,22–24,26

Table 2.  Differential metabolites in tissue and plasma samples of squamous cell carcinoma and adenocarcinoma

Metabolite Tissue/Blood Higher in ADC Higher in SCC Reference

PC, GPC, PE Tissue + − 2014 Study (NMR technology)22

Lactate Tissue − + 2014 Study (NMR technology)22

Glucose Tissue − + 2014 Study (NMR technology)22

Glutamate Tissue − + 2014 Study (NMR technology)22

Alanine Tissue − + 2014 Study (NMR technology)22

GSH (Glutathione) Tissue − + 2014 Study (NMR technology)22

Creatine Tissue + +++ 2014 Study (NMR technology)22

Taurine Tissue + − 2021 Study (MALDI-MSI)23

Glutamine Tissue − + 2021 Study (MALDI-MSI)23

Valine Tissue + + 2022 Study (UPLC-HRMS)24

Sphingosine Tissue + + 2022 Study (UPLC-HRMS)24

Glutamate γ-methyl ester Tissue + − 2022 Study (UPLC-HRMS)24

Lysophosphatidylcholine (LPC) Tissue LPC(16:0)(+) LPC(18:1) (+) 2022 Study (UPLC-HRMS)24

Leucine derivatives Tissue − + 2022 Study (UPLC-HRMS)24

Fatty acids Plasma − +(early stage) 2021 Study (LC-MS)26

Carnitine Plasma − +(early stage) 2021 Study (LC-MS)26

Glycerophospholipids Plasma − +(early stage) 2021 Study (LC-MS)26

Amines Plasma − +(early stage) 2021 Study (LC-MS)26

Amino acids Plasma − +(early stage) 2021 Study (LC-MS)26

Fatty acid amides Plasma − +(late stage) 2021 Study (LC-MS)26

Lysophosphatidic acids (LPAs) Plasma − +(late stage) 2024 Study (LC-MS)4

Oxidized phosphatidylcholines (oxPCs) Plasma +(late stage) − 2024 Study (LC-MS)4

ADC, adenocarcinoma; EGFR, epidermal growth factor receptor; GLUT1, glucose transporter 1; GPC, glycerophosphocholine; LC-MS, liquid chromatography-mass spectrometry; MAL-
DI-MSI, matrix-assisted laser desorption/ionization-mass spectrometry imaging; NMR, nuclear magnetic resonance; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SCC, 
squamous cell carcinoma; tRNA, transfer RNA; UPLC-HRMS, ultra performance liquid chromatography-high resolution mass spectrometry; VEGF, vascular endothelial growth factor.
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Clinical implications
Metabolomics is gradually being applied in clinical practice, es-
pecially in areas such as early screening, treatment monitoring, 
and personalized therapy. In diagnosis, an increasing number of 
cancer cell–related metabolic gene targets have been discovered, 
providing new directions for the early detection of lung cancer. 
The research mentioned above, such as the significant correlation 
between phospholipid metabolites in ADC and the relationship be-
tween SCC and glycolysis, has provided additional avenues for 
early lung cancer diagnosis. Regarding the metabolomics of plas-
ma from lung cancer patients, current logistic regression models 
can distinguish subtypes with high sensitivity and specificity using 
markers such as phosphatidylcholine and oxidized phosphatidyl-
choline. However, diagnostic models based on plasma samples 
still require the inclusion of more metabolites to provide sufficient 
data support. The treatment of lung cancer heavily depends on de-
termining the pathological nature of the tumor. Metabolomics can 
predict the likely subtype before tissue specimens are obtained, 
thereby assisting clinical decision-making. A study by Nie et al.29 
found through metabolomics analysis that metabolic disorders pro-
gressively intensified from precancerous lesions (atypical adeno-
matous hyperplasia/adenocarcinoma in situ) to invasive adenocar-
cinoma. This progression manifested as dysregulation in pathways 
such as nicotinic acid, glutathione, and purine metabolism, with 
specific metabolites showing dynamic changes alongside disease 
progression. These metabolic characteristics may serve as early 
diagnostic markers or therapeutic targets but require validation in 
larger cohorts. Qin et al.30 classified early-stage lung cancer pa-
tients based on serum metabolites and revealed that different clus-
ters of lymph node metastasis risks were significantly correlated 
with indicators such as elevated liver enzymes, uric acid, triglycer-
ides, SCC antigen, and globulin levels. This offers a predictive tool 
for lymph node metastasis in lung cancer patients.

Metabolomics can also support treatment decision-making for 

lung cancer. ADC and SCC exhibit distinct metabolic pathways 
that may be closely related to tumor biological behavior and clini-
cal prognosis. A key metabolic pathway in ADC is glycerophos-
pholipid metabolism, which primarily supports cell membrane for-
mation (Fig. 2).31 Glycerophospholipids are essential for forming 
lipid bilayers in all cells. Because cancer cells require increased 
glycerophospholipid synthesis to meet membrane generation de-
mands, this pathway is particularly crucial. Another significant 
pathway in adenocarcinoma is serine metabolism. Phosphoglycer-
ate dehydrogenase (PHGDH) is a key enzyme in the de novo bio-
synthesis of serine. Upregulation of PHGDH promotes serine syn-
thesis, supporting nucleotide and protein synthesis (Fig. 2).31 High 
PHGDH expression predicts poor prognosis in NSCLC, especially 
in lung adenocarcinoma (Fig. 3).32 NCT-503, a PHGDH inhibi-
tor, has been shown to reduce glucose-derived serine production 
and nucleotide synthesis by decreasing the one-carbon units from 
glucose-derived and exogenous serine.33 In contrast to ADC’s met-
abolic dependencies, SCC exhibits distinct activation of the panto-
thenate/coenzyme A (CoA) biosynthesis pathways. Pantothenate, 
or vitamin B5, is a precursor for CoA synthesis.31 CoA is vital 
for cell growth as it participates in numerous metabolic pathways, 
including phospholipid synthesis and fatty acid synthesis, and fatty 
acid degradation. The pantothenate and CoA biosynthesis path-
way is essential for cancer cells to generate the energy required 
for survival.14 Other important pathways include methionine and 
cysteine metabolism, which involve sulfur-containing amino acids 
critical for producing essential protein structures and metabolites. 
Cancer cell proliferation requires proteins containing disulfide 
bonds, for which methionine serves as a key precursor. Glutamine 
metabolism is also notable, as cancer cells rely on glutamine as a 
carbon and nitrogen source. Glutamine is converted to glutamate 
by glutaminase, which then enters the tricarboxylic acid cycle or 
supports nucleotide synthesis. In SCLC, a crucial metabolic path-
way is aminoacyl-transfer RNA biosynthesis, which facilitates the 
translation of the mRNA genetic code into amino acid chains for 

Fig. 2. The metabolic pathway of glycerophospholipids and the synthesis pathway of tryptophan, detailing the generation of lysophosphatidic acid (LPA) 
mediated by phospholipase, and membrane phospholipid synthesis through the CDP-choline pathway. CDP, cytidine diphosphate; DAG, diacylglycerol; 
PHGDH, phosphoglycerate dehydrogenase; PI, phosphatidylinositol; PSAT1, phosphoserine aminotransferase 1; PSPH, phosphoserine phosphatase.
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protein production.31 This pathway helps cancer cells produce the 
proteins essential for their survival.

Aloxatin is a vascular endothelial growth factor receptor tyros-
ine kinase inhibitor recommended for the treatment of advanced 
lung cancer patients who have previously received at least two 
systemic chemotherapies.34 A study by Pan et al.35 elucidated the 
molecular mechanisms of Aloxatin’s action and identified poten-
tial biomarkers and pathways related to its therapeutic effects. This 
included 13 endogenous differential metabolites and five potential 
metabolic pathways. Osimertinib is a third-generation epidermal 
growth factor receptor tyrosine kinase inhibitor primarily used to 
treat NSCLC patients with EGFR mutations.36 Ma et al.37 applied 
cell metabolomics to demonstrate that amino acid metabolism reg-
ulation, hypoxia-inducible factor 1 (HIF-1), and phosphatidylin-
ositol-3-kinase (PI3K)-protein kinase B (Akt) signaling pathways 
are strongly correlated with osimertinib resistance. Resistance to 
osimertinib is associated with upregulation of the HIF-1 and PI3K-
Akt signaling pathways, as well as oxidative phosphorylation, 
alongside downregulation of glycolysis and arginine metabolism. 
These studies not only provide methods for monitoring resistance 
during lung cancer treatment but also suggest potential target mol-
ecules and directions for further drug development. Surgery is an 
important treatment modality for early-stage lung cancer, and it 
can alter the metabolite profiles of patients. One study observed 
that levels of sphingolipids (such as ceramide and sphingomyelin) 
in lung cancer patients were elevated both before and after surgery 
compared to controls.38 Plasma metabolomics analysis may there-
fore offer additional approaches for postoperative monitoring in 
early-stage lung cancer patients. Typically, postoperative paraffin 
pathology is required to confirm R0 resection in lung cancer sur-
gery, while intraoperative frozen pathology often has considerable 
uncertainty. A 2019 study divided 31 NSCLC patients into a preop-
erative intravenous injection group receiving [U-13C]-glucose and 
a non-injection group.39 Isolated sections from resected tumors 
and adjacent normal lung tissue were used for metabolic tracing, 
combined with NMR, GC-MS, and fluoro-D-glucose-PET analy-
ses. The study found that SCC exhibited different glucose and glu-
tamine catabolic metabolic activities compared to ADC and non-

cancerous lung tissue sections. This research provides insights for 
more precise resection of lesion tissues during surgery. With the 
advancement of metabolomics technology and model establish-
ment, it is expected to greatly improve the accuracy of intraopera-
tive rapid frozen section analysis.

Future directions and limitations
In the future, metabolomics holds great potential for application in 
lung cancer research. With the continuous advancement of tech-
nology, especially the optimization of high-throughput analysis 
methods such as mass spectrometry and liquid chromatography, 
metabolomics will provide deeper insights into the metabolic dif-
ferences among various lung cancer subtypes. This will offer more 
precise support for early diagnosis, subtype classification, and 
personalized treatment. In the field of precise diagnosis and early 
screening, metabolite markers will be screened through large-scale 
cohort validation to identify high-specificity biomarkers (such as 
phosphatidylcholine, oxidized phosphatidylcholine, etc.), and non-
invasive detection tools based on blood or breath will be developed 
for early lung cancer screening and stratification of high-risk popu-
lations. For subtype classification assistance, multimodal models 
(metabolomics + imagingomics + genomics), combined with AI 
algorithms, will be established to achieve precise subtype classifi-
cation and guide the selection of preoperative treatment strategies. 
Combined drug strategies (e.g., targeting metabolic pathways + 
traditional chemotherapy/tailored tyrosine kinase inhibitor) will be 
developed by revealing metabolic reprogramming related to drug 
resistance (such as the dysregulation of the HIF-1/PI3K-Akt path-
way in osimertinib resistance). We can also establish a recurrence 
warning model and optimize postoperative follow-up plans by us-
ing changes in postoperative metabolites (such as plasma sphin-
golipids, including neuroceramide and sphingomyelin) for lung 
cancer patients requiring surgery. Spatial metabolomics, an impor-
tant research direction for the future, can, when combined with 
mass spectrometry imaging technology,40 locate the spatial distri-
bution of metabolites in tumor tissues, thereby guiding the design 
of surgical resection boundaries or radiotherapy target areas.

Fig. 3. The enzymatic synthesis process from pantothenic acid to functional coenzyme A (CoA). 
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However, there are still many challenges that need to be ad-
dressed in the clinical application and translation of metabolomics. 
These include sample processing issues, where metabolites can 
be easily affected by collection and storage conditions. A unified 
pre-treatment process (such as rapid freezing and standardized ex-
traction methods) needs to be established. Additionally, there is a 
significant variation in detection sensitivity among different mass 
spectrometry/NMR platforms, necessitating cross-platform data 
calibration and the construction of a shared database.

In terms of clinical translation, existing studies are mostly based 
on small, single-center samples, and multi-center, large-sample 
validation is needed to assess the universality of biomarkers. 
Mechanism studies are also lacking, as most metabolic markers are 
only correlated with diseases, without understanding the underly-
ing mechanisms (such as whether elevated liver enzymes directly 
drive metastasis). Furthermore, metabolites can interfere with the 
accuracy of test results, and some markers (such as lactate) may 
also increase in non-cancerous conditions such as inflammation or 
infection. This highlights the need for integrating multi-omics data 
to improve specificity.

Metabolomics provides a new perspective for the precise diag-
nosis and treatment of lung cancer. In the future, its transformation 
from a “research tool” to a “clinical weapon” will require technical 
standardization, multi-omics integration, and large-sample valida-
tion. Additionally, targeting metabolic pathways and developing 
strategies to reverse drug resistance are expected to reshape the 
treatment landscape of lung cancer. However, overcoming current 
technical bottlenecks and insufficient mechanistic research will be 
essential for the comprehensive implementation of individualized 
medical care.

Admittedly, this review provides only a general overview of 
the current mainstream studies. There is no universally accepted 
standard for evaluating study quality, and we did not conduct an 
in-depth analysis of how heterogeneity in sample types, sample 
sizes, or experimental techniques across studies may influence 
the generalizability of their conclusions. Consequently, potential 
biases associated with small-sample studies were not systemati-
cally assessed, and the reported performance of diagnostic models 
should be interpreted with appropriate caution to avoid overly op-
timistic evaluations.

Conclusions
This review systematically integrates recent advances in metabo-
lomics within lung cancer research, highlighting its potential to es-
tablish a novel paradigm for the precise diagnosis and treatment of 
lung cancer by elucidating the mechanisms of tumor metabolic re-
programming. Studies have shown that different subtypes of lung 
cancer exhibit distinct metabolic profiles. These findings not only 
deepen the understanding of tumor heterogeneity but also drive 
innovation in non-invasive diagnostic techniques. Metabolic mod-
els based on plasma, saliva, and EBCs are increasingly integrated 
with traditional imaging screening, which can effectively reduce 
the high false-positive rate of low-dose CT and the uncertainty of 
pathological diagnoses of small specimens. In clinical practice, 
metabolomics is reshaping lung cancer management through three 
key pathways: early screening, therapeutic decision-making, and 
prognostic management. Moving forward, addressing current bot-
tlenecks, such as technical standardization, multi-center valida-
tion, and the limited depth of mechanistic research, will be critical 
for promoting the clinical translation and further development of 
metabolomics in lung cancer.
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